Drones currently outpace their countermeasurs. This will definitely not be a thing forever. I think the effectiveness of cheap drones will go down as be countermeasures are invented.
We already see new very effective military drone jammers starting to come out
Jammers only work against remote controlled drones. Autonomous ones have no such issue. And jammers are never a problem against civilians, which tech like this will eventually be used on.
The only reliable counter to a drone is likely another drone.
I suspect Peter F Hamilton got it close, in the Confederation series, with WASPs. They are space based weapon platforms. They carry a mix of offensive and defensive subsystems, and operate with swarm logic.
I could easily see a larger drone carrying a swarm of 1 shot micro drones. When close, some would be sacrificed to get better sensor data, others would go on the attack. Conversely, a defensive target would launch their own swarm. It’s goal would be to stop the attackers getting a good shot on a high value target. It might also counterattack, either against the mother ship drone, or backtracking to find the launch site.
Jamming would also be part of this. A jammer could easily cut off the swarm from external data sources. Live satellite or remote surveillance systems would be cut. Point to point lasers are far harder, as are burst transmissions. Local sensor drones could easily punch short range data back, or paint targets, until they are destroyed by defensive systems.
I’ve worked with drones of various sizes. Bigger and more expensive ones are more capable, but hard to make bullet proof. If you can remote off their sensors and weapons into cheap, more disposable systems, it makes sense.
A big drone, like a predator, drops a package into an area. Mid sized multicopters provide local computing power and coordination. Small planes provide fast loiter surveillance. Small multicopters with cameras give more accurate coverage. For attack, you have what amounts to a hand grenade with props. Protection takes the form of similar disposables. A flying strobe light to mess up optical tracking. Chaff bombs to mess up radar tracking. Smoke to obscure the high value units.
A lot of these I could throw together myself, given a few weeks, and a few grand. What part wouldn’t be easy, for a large and well funded military r&d team?
What part wouldn’t be easy? The hand grenade with props. The strobe light. The chaff. The software. The batteries and power supply. The reliability. The compute requirements. There is so many things that are easy sounding to you because you romanticise the idea but it’s not easily done at all
An explosive drone is easy. Just a small amount of high explosives and an electronic detonator.
Strobe lights could just be an overdriven LED. It just needs to dazzle optical sensors for a few seconds.
Chaff is just lightweight foil. It’s effectively an oversized party popper. It’s job is to help overwhelm radar based tracking.
Software is the hardest bit. At the same time, many computer game ‘AIs’ are good enough at this they need to be dumbed down significantly. It would be more specialised, but only needs to be written once, then rolled out to a fleet.
Batteries would be a swarms limiting factor. Single shot lithium would likely be the bulk. 5-20 minutes of flight, then it’s dead. Disposables would likely need to be moved into position by other means, either a dedicated transport drone, ground transport, or air drop. Your transport doesn’t need to stay in the combat zone however, it can bug out and be reused. Larger more specialist systems would land and loiter to save batteries, and/or be fuel cell powered.
Reliability is handled by numbers, losing 10% is fine, when you have 20% extra.
Computing requires would be met by something like Nvidia’s Jetson range. They are designed for low power, low weight AI processing. Putting a tflop of computing power in the close Comms loop would be simple. The controller would be the most expensive part of the swarm. Not only would it need enough power, both computing and electrical, but also significant Comms capabilities. Radio links, with optical backup would be the workhorse. With a mesh setup, including dummies to help hide it’s location. This is similar to how the display drones work. An expensive hub, serving a cheap swarm.
While none of this is “easy” for a random guy in a shed, or a terrorist in a cave, it’s child’s play compared to a lot of the tech the US can deploy.
I design build and operate broadcast equipment. A good chunk goes onto UAVs. I’ve built small quads, and I’ve played around with equipment fully capable of some of the more complex tasks. E.g. live 3D mapping from an airborne capable computer.
I’m also friends with several people who used to design and build military equipment, including radar systems. Military tech is a weird mix of amazingly high tech, stupidly simple hacks and long lifespan versions of off the shelf technology. I’ve a fairly good feel for how hard or easy a good chunk of the bits are to build. Most of what I suggested I could personally design and build, or easily commission, given some time, a reasonable budget, and access to restricted resources as required.
In its simplest form, chaff is just tuned lengths of mylar foil. As it flutters, it glitters in a radar beam. This creates a large noise floor. While modern military chaff is more advanced, the old stuff will still cause problems for modern systems. It’s not trying to hide a tank, or pull off a missile’s lock. It’s trying to swamp the signal from a tiny, mostly plastic, drone.
I’m also not saying to reinvent the wheel. Chaff is now a fairly niche defence tool. It’s hard to use while advancing, and gives away your position. It also needs to be integrated with other countermeasures to be useful. It is still a fairly solved problem however. It’s cheap to make, quick to deploy, and available in bulk, if required.
Most modern military equipment isn’t expensive due to its inherent nature. It’s expensive because it’s a niche product, and the buyers have deep wallets. The same game plays out in broadcasting. A £100k camera isn’t that much better than a £5k one. It is better however, and buyers are willing to pay for that difference.
The reverse is also true, as Ukraine is proving. 100 $1k drones are more useful than 1 $100k, ultra capable, drone or missile. The point of a swarm is to allow multiple cheap systems to do the job of a far more expensive weapon.
Anti-air guns are the countermeasure. RADAR good enough to detect drones + an aimbot and programmable air-burst round to “shotgun” your pellets to damage those soft plastic bits.
We’re going back to WW2 tech. AA guns were considered obsolete because Helicopters + Missiles had more range. But now we need to build cheaper AA Guns for the anti-drone role.
AA Guns are also useful vs infantry, so in an infantry vs infantry fight, having an AA Gun platform will be useful even without any drones around. Airburst and rapid fire is always useful, and I expect the computers that make RADAR possible will be far cheaper today than decades past.
If you know that a given point is at risk of attack, using a static defense like AA guns is practical. Say you have some sort of specific, high-value target that you can put AA guns around. That may be a very sensible thing to do.
But the problem, if you intend to rely only on those, is that there is then a concentration of force issue. The attacker can choose which point to attack; they get the initiative.
Say you’re trying to defend against something like a Shahed-136. It can hit pretty much anywhere in Ukraine. You can’t stick an AA gun on everything that Russia might consider trading a Shahed-136 for.
But, okay, say you try to go big with static defenses. Let’s say that you can obtain and pony up the resources to hypothetically stick an AA gun at every single point along the front line and border, and that your AA gun has the altitude to hit a drone. You have an unbroken line of engagement envelope all around a country. That’d be an extraordinary expenditure, but it could hypothetically be done. So a drone has to fly through defended airspace. The problem is that if the other guy expends an equivalent amount of resources, he can buy a shit-ton of drones and fly them all through a single gun’s engagement envelope. Even if he doesn’t even bother to try to attack the antiaircraft gun, your gun defenses are just going to get overwhelmed, because all of the attacker’s resources are engaged, whereas the vast bulk of the defender’s resources are not in the fight. Maybe you hit a tiny percentage of drones, but the rest are going to be able to simply fly through.
The problem is that the cost of static defenses in that scenario grows at something like the square of the scale of the air conflict – you have to have enough static defenses to counter all of the attacker’s aircraft, and pre-place those defenses at all points that might be attacked, whereas the cost of the attack grows only linearly. It’s cost-effective to use static defenses only if the attacker is compelled to attack a limited number of points.
If that’s not the case, then using some form of mobile defense is more important – say, I don’t know, you have a fleet of gun-armed, jet-powered counter-UAS UASes. Dollar-for-dollar, they might not be as effective as a static gun. But…you can route most or all of them in to meet any given attack.
The spot where we intend to fight must not be made known; for then the enemy will have to prepare against a possible attack at several different points; and his forces being thus distributed in many directions, the numbers we shall have to face at any given point will be proportionately few.
For should the enemy strengthen his van, he will weaken his rear; should he strengthen his rear, he will weaken his van; should he strengthen his left, he will weaken his right; should he strengthen his right, he will weaken his left. If he sends reinforcements everywhere, he will everywhere be weak.
Numerical weakness comes from having to prepare against possible attacks; numerical strength, from compelling our adversary to make these preparations against us.
Knowing the place and the time of the coming battle, we may concentrate from the greatest distances in order to fight.
But if neither time nor place be known, then the left wing will be impotent to succor the right, the right equally impotent to succor the left, the van unable to relieve the rear, or the rear to support the van. How much more so if the furthest portions of the army are anything under a hundred LI apart, and even the nearest are separated by several LI!
Say you’re trying to defend against something like a Shahed-136. It can hit pretty much anywhere in Ukraine. You can’t stick an AA gun on everything that Russia might consider trading a Shahed-136 for.
As far as I know, the routine in the current war is - the AA gun is on a truck that moves 80 km/h, the drone comes in slower than 300 km/h, one or multiple truck crews position themselves on likely vantage points for intercepting, and the rest is luck.
It’s going up be interesting and scary when we see the first mega swarm of drones, a river of them just pouring through the sky and hammering from every direction at the defenses.
Constant evolution of drone and antidrone, a production race with frontlines being slowly shifting walls of drone combat, them pouring out of factories as fast as they can be made with the front moving based on who can make more per hour
I suspect it will be more subtle even if it’s only battery life limited. Huge swarms will also struggle against fixed defences. More likely it will be used in ambush. E.g. air deployed near an enemy convoy, or swarming from rooftops and windows onto an infantry unit. Counter deployment will have to be seconds to stop the lead elements. Potentially with heavier reinforcements flying in.
I’ve personally got visions of a Boston dynamics dogbot with a harness full of drones. 1 button press and a few dozen micro drones swarm out, with larger ones launching as needed.
I could also see facial recognition drones being deployed from a predator drone, like cluster bombs. A little akin to the bots used in the film minority report. They swarm a building or block, and try and identify all the faces they can find.
The key thing however will be battery life. Multicopters are power hogs. You need around 40% battery to get maybe 5-20 minutes flight times (depending on how the manoeuvre). Longer times can be achieved , but requires larger systems with higher costs. Is 1 system with a 2 hour flight time worth 20 smaller systems only good for 10 minutes?
It’s one thing detecting a person with machine learning in a test and an actual soldier with camouflage in a very imperfect environment. Also good luck telling friend from foe from civilian.
This has all sorts of problems while making the whole system more complicated and prone to issues. Not the mention moral questions of autonomous weapons. I have no doubt it will happen but not yet, not here.
It’s difficult, but how difficult depends on the task you set. If the task is “maintain manually initiated target lock on a clearly defined object on an empty field, despite the communications link breaking for 10 seconds” -> it is “give a team of coders half a year” difficult. It’s been solved before, the solution just needs re-inventing and porting to a different platform.
If it’s “identify whether an object is military, whether it is frienly or hostile, consider if it’s worth attacking, and attack a camouflaged target in a dense forest”, then it’s currently not worth trying.
Drones currently outpace their countermeasurs. This will definitely not be a thing forever. I think the effectiveness of cheap drones will go down as be countermeasures are invented.
We already see new very effective military drone jammers starting to come out
Jammers only work against remote controlled drones. Autonomous ones have no such issue. And jammers are never a problem against civilians, which tech like this will eventually be used on.
That’s only one example
The only reliable counter to a drone is likely another drone.
I suspect Peter F Hamilton got it close, in the Confederation series, with WASPs. They are space based weapon platforms. They carry a mix of offensive and defensive subsystems, and operate with swarm logic.
I could easily see a larger drone carrying a swarm of 1 shot micro drones. When close, some would be sacrificed to get better sensor data, others would go on the attack. Conversely, a defensive target would launch their own swarm. It’s goal would be to stop the attackers getting a good shot on a high value target. It might also counterattack, either against the mother ship drone, or backtracking to find the launch site.
Jamming would also be part of this. A jammer could easily cut off the swarm from external data sources. Live satellite or remote surveillance systems would be cut. Point to point lasers are far harder, as are burst transmissions. Local sensor drones could easily punch short range data back, or paint targets, until they are destroyed by defensive systems.
You use the word easily so many times here where it becomes more and more apparent that you probably don’t think it means what it means
I’ve worked with drones of various sizes. Bigger and more expensive ones are more capable, but hard to make bullet proof. If you can remote off their sensors and weapons into cheap, more disposable systems, it makes sense.
A big drone, like a predator, drops a package into an area. Mid sized multicopters provide local computing power and coordination. Small planes provide fast loiter surveillance. Small multicopters with cameras give more accurate coverage. For attack, you have what amounts to a hand grenade with props. Protection takes the form of similar disposables. A flying strobe light to mess up optical tracking. Chaff bombs to mess up radar tracking. Smoke to obscure the high value units.
A lot of these I could throw together myself, given a few weeks, and a few grand. What part wouldn’t be easy, for a large and well funded military r&d team?
What part wouldn’t be easy? The hand grenade with props. The strobe light. The chaff. The software. The batteries and power supply. The reliability. The compute requirements. There is so many things that are easy sounding to you because you romanticise the idea but it’s not easily done at all
Easy for a remotely advanced military force.
An explosive drone is easy. Just a small amount of high explosives and an electronic detonator.
Strobe lights could just be an overdriven LED. It just needs to dazzle optical sensors for a few seconds.
Chaff is just lightweight foil. It’s effectively an oversized party popper. It’s job is to help overwhelm radar based tracking.
Software is the hardest bit. At the same time, many computer game ‘AIs’ are good enough at this they need to be dumbed down significantly. It would be more specialised, but only needs to be written once, then rolled out to a fleet.
Batteries would be a swarms limiting factor. Single shot lithium would likely be the bulk. 5-20 minutes of flight, then it’s dead. Disposables would likely need to be moved into position by other means, either a dedicated transport drone, ground transport, or air drop. Your transport doesn’t need to stay in the combat zone however, it can bug out and be reused. Larger more specialist systems would land and loiter to save batteries, and/or be fuel cell powered.
Reliability is handled by numbers, losing 10% is fine, when you have 20% extra.
Computing requires would be met by something like Nvidia’s Jetson range. They are designed for low power, low weight AI processing. Putting a tflop of computing power in the close Comms loop would be simple. The controller would be the most expensive part of the swarm. Not only would it need enough power, both computing and electrical, but also significant Comms capabilities. Radio links, with optical backup would be the workhorse. With a mesh setup, including dummies to help hide it’s location. This is similar to how the display drones work. An expensive hub, serving a cheap swarm.
While none of this is “easy” for a random guy in a shed, or a terrorist in a cave, it’s child’s play compared to a lot of the tech the US can deploy.
It’s not easy for you, me
For anyone.
It’s easy for the anime engineers in your head
No, it’s not just arts and crafts foil put in a box and now you have chaffe
Again it’s just you romanticised the idea and don’t understand how complicated such a system would be, it’s beyond our capabilities to make
military hardware is not made to be cool, it’s made to be cost effective and reliable
I design build and operate broadcast equipment. A good chunk goes onto UAVs. I’ve built small quads, and I’ve played around with equipment fully capable of some of the more complex tasks. E.g. live 3D mapping from an airborne capable computer.
I’m also friends with several people who used to design and build military equipment, including radar systems. Military tech is a weird mix of amazingly high tech, stupidly simple hacks and long lifespan versions of off the shelf technology. I’ve a fairly good feel for how hard or easy a good chunk of the bits are to build. Most of what I suggested I could personally design and build, or easily commission, given some time, a reasonable budget, and access to restricted resources as required.
In its simplest form, chaff is just tuned lengths of mylar foil. As it flutters, it glitters in a radar beam. This creates a large noise floor. While modern military chaff is more advanced, the old stuff will still cause problems for modern systems. It’s not trying to hide a tank, or pull off a missile’s lock. It’s trying to swamp the signal from a tiny, mostly plastic, drone.
I’m also not saying to reinvent the wheel. Chaff is now a fairly niche defence tool. It’s hard to use while advancing, and gives away your position. It also needs to be integrated with other countermeasures to be useful. It is still a fairly solved problem however. It’s cheap to make, quick to deploy, and available in bulk, if required.
Most modern military equipment isn’t expensive due to its inherent nature. It’s expensive because it’s a niche product, and the buyers have deep wallets. The same game plays out in broadcasting. A £100k camera isn’t that much better than a £5k one. It is better however, and buyers are willing to pay for that difference.
The reverse is also true, as Ukraine is proving. 100 $1k drones are more useful than 1 $100k, ultra capable, drone or missile. The point of a swarm is to allow multiple cheap systems to do the job of a far more expensive weapon.
https://www.youtube.com/watch?v=rr7ym1zkda8
Anti-air guns are the countermeasure. RADAR good enough to detect drones + an aimbot and programmable air-burst round to “shotgun” your pellets to damage those soft plastic bits.
We’re going back to WW2 tech. AA guns were considered obsolete because Helicopters + Missiles had more range. But now we need to build cheaper AA Guns for the anti-drone role.
AA Guns are also useful vs infantry, so in an infantry vs infantry fight, having an AA Gun platform will be useful even without any drones around. Airburst and rapid fire is always useful, and I expect the computers that make RADAR possible will be far cheaper today than decades past.
They may both have a role.
If you know that a given point is at risk of attack, using a static defense like AA guns is practical. Say you have some sort of specific, high-value target that you can put AA guns around. That may be a very sensible thing to do.
But the problem, if you intend to rely only on those, is that there is then a concentration of force issue. The attacker can choose which point to attack; they get the initiative.
Say you’re trying to defend against something like a Shahed-136. It can hit pretty much anywhere in Ukraine. You can’t stick an AA gun on everything that Russia might consider trading a Shahed-136 for.
But, okay, say you try to go big with static defenses. Let’s say that you can obtain and pony up the resources to hypothetically stick an AA gun at every single point along the front line and border, and that your AA gun has the altitude to hit a drone. You have an unbroken line of engagement envelope all around a country. That’d be an extraordinary expenditure, but it could hypothetically be done. So a drone has to fly through defended airspace. The problem is that if the other guy expends an equivalent amount of resources, he can buy a shit-ton of drones and fly them all through a single gun’s engagement envelope. Even if he doesn’t even bother to try to attack the antiaircraft gun, your gun defenses are just going to get overwhelmed, because all of the attacker’s resources are engaged, whereas the vast bulk of the defender’s resources are not in the fight. Maybe you hit a tiny percentage of drones, but the rest are going to be able to simply fly through.
The problem is that the cost of static defenses in that scenario grows at something like the square of the scale of the air conflict – you have to have enough static defenses to counter all of the attacker’s aircraft, and pre-place those defenses at all points that might be attacked, whereas the cost of the attack grows only linearly. It’s cost-effective to use static defenses only if the attacker is compelled to attack a limited number of points.
If that’s not the case, then using some form of mobile defense is more important – say, I don’t know, you have a fleet of gun-armed, jet-powered counter-UAS UASes. Dollar-for-dollar, they might not be as effective as a static gun. But…you can route most or all of them in to meet any given attack.
– Sun Tzu, The Art of War, ~400 BC
As far as I know, the routine in the current war is - the AA gun is on a truck that moves 80 km/h, the drone comes in slower than 300 km/h, one or multiple truck crews position themselves on likely vantage points for intercepting, and the rest is luck.
It’s going up be interesting and scary when we see the first mega swarm of drones, a river of them just pouring through the sky and hammering from every direction at the defenses.
Constant evolution of drone and antidrone, a production race with frontlines being slowly shifting walls of drone combat, them pouring out of factories as fast as they can be made with the front moving based on who can make more per hour
I suspect it will be more subtle even if it’s only battery life limited. Huge swarms will also struggle against fixed defences. More likely it will be used in ambush. E.g. air deployed near an enemy convoy, or swarming from rooftops and windows onto an infantry unit. Counter deployment will have to be seconds to stop the lead elements. Potentially with heavier reinforcements flying in.
I’ve personally got visions of a Boston dynamics dogbot with a harness full of drones. 1 button press and a few dozen micro drones swarm out, with larger ones launching as needed.
I could also see facial recognition drones being deployed from a predator drone, like cluster bombs. A little akin to the bots used in the film minority report. They swarm a building or block, and try and identify all the faces they can find.
The key thing however will be battery life. Multicopters are power hogs. You need around 40% battery to get maybe 5-20 minutes flight times (depending on how the manoeuvre). Longer times can be achieved , but requires larger systems with higher costs. Is 1 system with a 2 hour flight time worth 20 smaller systems only good for 10 minutes?
Onboard AI guidance is not difficult.
I will be very suprised if this isn’t already happening.
It’s one thing detecting a person with machine learning in a test and an actual soldier with camouflage in a very imperfect environment. Also good luck telling friend from foe from civilian.
This has all sorts of problems while making the whole system more complicated and prone to issues. Not the mention moral questions of autonomous weapons. I have no doubt it will happen but not yet, not here.
Why would the drone differentiate an armed person from a civilian? I mean, you’ll be asking to separate out children next, at that rate!
Yes it is.
Both of you are right.
It’s difficult, but how difficult depends on the task you set. If the task is “maintain manually initiated target lock on a clearly defined object on an empty field, despite the communications link breaking for 10 seconds” -> it is “give a team of coders half a year” difficult. It’s been solved before, the solution just needs re-inventing and porting to a different platform.
If it’s “identify whether an object is military, whether it is frienly or hostile, consider if it’s worth attacking, and attack a camouflaged target in a dense forest”, then it’s currently not worth trying.