• CerealKiller01@lemmy.world
    link
    fedilink
    English
    arrow-up
    31
    arrow-down
    3
    ·
    3 months ago

    Huh?

    The smartphone improvements hit a rubber wall a few years ago (disregarding folding screens, that compose a small market share, improvement rate slowed down drastically), and the industry is doing fine. It’s not growing like it use to, but that just means people are keeping their smartphones for longer periods of time, not that people stopped using them.

    Even if AI were to completely freeze right now, people will continue using it.

    Why are people reacting like AI is going to get dropped?

    • Ultraviolet@lemmy.world
      link
      fedilink
      English
      arrow-up
      8
      arrow-down
      5
      ·
      3 months ago

      Because novelty is all it has. As soon as it stops improving in a way that makes people say “oh that’s neat”, it has to stand on the practical merits of its capabilities, which is, well, not much.

      • theherk@lemmy.world
        link
        fedilink
        English
        arrow-up
        9
        arrow-down
        2
        ·
        3 months ago

        I’m so baffled by this take. “Create a terraform module that implements two S3 buckets with cross-region bidirectional replication. Include standard module files like linting rules and enable precommit.” Could I write that? Yes. But does this provide an outstanding stub to start from? Also yes.

        And beyond programming, it is otherwise having positive impact on science and medicine too. I mean, anybody who doesn’t see any merit has their head in the sand. That of course must be balanced with not falling for the hype, but the merits are very real.

        • Eccitaze@yiffit.net
          link
          fedilink
          English
          arrow-up
          5
          ·
          3 months ago

          There’s a pretty big difference between chatGPT and the science/medicine AIs.

          And keep in mind that for LLMs and other chatbots, it’s not that they aren’t useful at all but that they aren’t useful enough to justify their costs. Microsoft is struggling to get significant uptake for Copilot addons in Microsoft 365, and this is when AI companies are still in their “sell below cost and light VC money on fire to survive long enough to gain market share” phase. What happens when the VC money dries up and AI companies have to double their prices (or more) in order to make enough revenue to cover their costs?

          • theherk@lemmy.world
            link
            fedilink
            English
            arrow-up
            2
            ·
            3 months ago

            Nothing to argue with there. I agree. Many companies will go out of business. Fortunately we’ll still have the llama3’s and mistral’s laying around that I can run locally. On the other hand cost justification is a difficult equation with many variables, so maybe it is or will be in some cases worth the cost. I’m just saying there is some merit.

          • obbeel@lemmy.eco.br
            link
            fedilink
            English
            arrow-up
            1
            ·
            3 months ago

            I understand that it makes less sense to spend in model size if it isn’t giving back performance, but why would so much money be spent on larger LLMs then?

    • drake@lemmy.sdf.org
      link
      fedilink
      English
      arrow-up
      2
      ·
      3 months ago

      It’s absurdly unprofitable. OpenAI has billions of dollars in debt. It absolutely burns through energy and requires a lot of expensive hardware. People aren’t willing to pay enough to make it break even, let alone profit

      • sugar_in_your_tea@sh.itjust.works
        link
        fedilink
        English
        arrow-up
        2
        ·
        3 months ago

        Eh, if the investment dollars start drying up, they’ll likely start optimizing what they have to get more value for fewer resources. There is value in AI, I just don’t think it’s as high as they claim.

    • ClamDrinker@lemmy.world
      link
      fedilink
      English
      arrow-up
      2
      ·
      edit-2
      3 months ago

      People differentiate AI (the technology) from AI (the product being peddled by big corporations) without making clear that nuance (Or they mean just LLMs, or they aren’t even aware the technology has a grassroots adoption outside of those big corporations). It will take time, and the bubble bursting might very well be a good thing for the technology into the future. If something is only know for it’s capitalistic exploits it’ll continue to be seen unfavorably even when it’s proven it’s value to those who care to look at it with an open mind. I read it mostly as those people rejoicing over those big corporations getting shafted for their greedy practices.

      • sugar_in_your_tea@sh.itjust.works
        link
        fedilink
        English
        arrow-up
        3
        ·
        3 months ago

        the bubble bursting might very well be a good thing for the technology into the future

        I absolutely agree. It worked wonders for the Internet (dotcom boom in the 90s), and I imagine we’ll see the same w/ AI sometime in the next 10 years or so. I do believe we’re seeing a bubble here, and we’re also seeing a significant shift in how we interact w/ technology, but it’s neither as massive or as useless as proponents and opponents claim.

        I’m excited for the future, but not as excited for the transition period.

        • ArchRecord@lemm.ee
          link
          fedilink
          English
          arrow-up
          2
          ·
          3 months ago

          I’m excited for the future, but not as excited for the transition period.

          I have similar feelings.

          I discovered LLMs before the hype ever began (used GPT-2 well before ChatGPT even existed) and the same with image generation models barely before the hype really took off. (I was an early closed beta tester of DALL-E)

          And as my initial fascination grew, along with the interest of my peers, the hype began to take off, and suddenly, instead of being an interesting technology with some novel use cases, it became yet another technology for companies to show to investors (after slapping it in a product in a way no user would ever enjoy) to increase stock prices.

          Just as you mentioned with the dotcom bubble, I think this will definitely do a lot of good. LLMs have been great for asking specialized questions about things where I need a better explanation, or rewording/reformatting my notes, but I’ve never once felt the need to have my email client generate every email for me, as Google seems to think I’d want.

          If we can just get all the over-hyped corporate garbage out, and replace it with more common-sense development, maybe we’ll actually see it being used in a way that’s beneficial for us.

          • sugar_in_your_tea@sh.itjust.works
            link
            fedilink
            English
            arrow-up
            3
            ·
            edit-2
            3 months ago

            I initially started with natural language processing (small language models?) in school, which is a much simpler form of text generation that operates on words instead of whatever they call the symbols in modern LLMs. So when modern LLMs came out, I basically registered that as, “oh, better version of NLP,” with all its associated limitations and issues, and that seems to be what it is.

            So yeah, I think it’s pretty neat, and I can certainly see some interesting use-cases, but it’s really not how I want to interface with computers. I like searching with keywords and I prefer the process of creation more than the product of creation, so image and text generation aren’t particularly interesting to me. I’ll certainly use them if I need to, but as a software engineer, I just find LLMs in all forms (so far) annoying to use. I don’t even like full text search in many cases and prefer regex searches, so I guess I’m old-school like that.

            I’ll eventually give in and adopt it into my workflow and I’ll probably do so before the average person does, but what I see and what the media hypes it up to be really don’t match up. I’m planning to set up a llama model if only because I have the spare hardware for it and it’s an interesting novelty.