Hydrogen power is an exciting form of clean energy. But hydrogen typically needed to be produced in a lab using energy-intensive methods. White hydrogen, a newly identified hydrogen source, could eliminate the need for lab production.
So, they found one large deposit, but it’s so vanishingly rare that until a few years ago they didn’t even think you could find natural deposits of hydrogen. Yeah, this isn’t a solution to anything, this is just the most niche natural resource ever discovered.
This is a shit article, but the exciting part is that we found a natural deposit where white hydrogen is being made in the Earth’s crust. Finding that means we can study the mechanism and conditions required and look for more.
Getting away from carbon fuels and creating viable hydrogen-driven industries would be an excellent step in the right direction. We need to build out the infrastructure to be the backbone that replaces oil and gas. Finding natural deposits, even in limited amounts, will bring down the cost of production and nudge the revolution along.
Everything you said is true. This isn’t a solution, and it is vanishingly rare. That doesn’t mean it isn’t an exciting and promising discovery. It’s like landing on Mars and finding liquid water, and you’re complaining that it isn’t enough to go for a swim.
Getting away from carbon fuels and creating viable hydrogen-driven industries would be an excellent step in the right direction.
Logistically hydrogen is a pretty horrible fuel source. The molecule (H2) is so darn small it leaks past nearly all valves and seals except for those specifically designed (and maintained!) for hydrogen. Its also very low density so trying to store it mean GIANT containers that don’t end up holding much hydrogen. You can increase the density for storage by liquefying it, but now your storage requirements for keeping extra cold in its liquid state increase costs. It also takes lots of energy to chill gaseous hydrogen to liquid, so you’re spending your fuel your trying to store to make it storeable.
If France can burn this white hydrogen on-site to generate eletricity, then its a good find, but the moment you talk about trying to store hydrogen, and ship it in quantity, the value of this find is suspect.
Not that you’re wrong, but you could make the same complaints of any fuel source. Crude oil is caustic and dirty, requiring filtration and chemical separation, special not to mention it must be extracted from the earth, all of which requires energy. Natural gas, nuclear fuel, even solar needs to solve for battery storage. There are storage and production costs associated eith energy. The more investment in the infrastructure, the more efficient it will become. That’s why found energy is a boon for the technology in general, even if the benefit is only temporary.
Not that you’re wrong, but you could make the same complaints of any fuel source.
I’m not saying there’s a perfect energy source (wind and solar come close but even they require some small amount of dirty manufacturing). What I’m referring to is the proportion of downsides. Hydrogen come with huge huge downsides, with very few upsides. In fact, I think hydrogen has only a SINGLE upside: it burns clean (no carbon).
Thats it though. Thats all. Every other measure its worse than every other mainstream electricity source, and its worse in much much larger proportions compared to other sources.
That “SINGLE upside” is the difference maker. What other criteria is more important?
What other criteria is more important?
Really?
- How about how much you have?
- How easy is it to get more?
- How cheap is it to get more?
- How much can you store?
- How cheap is it to store?
- How safe is it to handle?
- What is the spoilage rate?
- How easy is it to move?
- How cheap is it to move?
- How easy is it to consume?
Hydrogen fails on every single one of those compared to alternatives.
Additionally nuclear power is also clean in that it produces no carbon emissions. It does produce nuclear waste, but that’s easily managed and can even be recycled somewhat. Just the amount of nuclear waste that we have in the US could be reprocessed to produce enough power to meet the entire power demand of the entire US for the next 100 years, to say nothing of new fuel. Nuclear waste is also easier and safer to dispose of than most of the waste that comes out of coal fired plants (which is also radioactive), and somewhat ironically nuclear power plants actually release significantly less radiation into the environment than coal plants do.
Hydrogen power, outside of maybe the highly specific circumstances at play in Japan, just doesn’t make any sense. It’s hard to get, hard to transport, hard to store, its energy density is relatively poor, and it’s even dangerous to be around due to the risk of explosion and fire.
And yet, being carbon-free, makes it worthwhile.
I read some interesting stuff about how Japan plan to create green hydrogen and convert it into ammonia to send through their existing gas infrastructure. For a variety of reasons for Japan it makes a lot of sense to go all in on hydrogen. It’s also a super interesting way for grid scale Energy storage in Europe. There’s plenty of sun and wind when it’s sunny or windy, using existing gas infrastructure to handle renewably generated ammonia could be a quick win to be able to build up strategic reserves during net positive energy days.
I read some interesting stuff about how Japan plan to create green hydrogen and convert it into ammonia to send through their existing gas infrastructure.
That does sound interesting, but its no hydrogen as a fuel source (like the article), its used in your description as a single link in a chain. So they’re creating hydrogen from a process (likely electrolysis) using some other energy source, then nearly immediately converting that hydrogen into ammonia for better storage and transport. That would be a good use of hydrogen, as an intermediate step and not a beginning and end step.
Yeah that’s exactly it. Create hydrogen and convert it into ammonia in places with ready access to renewables, then send it and store it via gas infrastructure to where it’s needed, and burn it to create power. It’s less efficient than straight h2, but the benefits of being able to transport it and store it make up for that. Japan’s grid is crazy fractured and they went heavy into gas, so for them it’s kind of a no brainer to invest in that tech.
If you Google around there lots of more detailed reporting on the whole process and plan. I can try and dig up the very insightful comment I read on tildes which had lots of citations too if you’re interested.
I mean yeah, it’s really interesting from a scientific standpoint, although the article didn’t seem to indicate anything about hydrogen being produced. I had assumed this was some kind of natural inclusion, maybe something left over from the initial formation of the planet or some super rare chemical reaction, not an ongoing process. It would have been nice to see more details about that.
My complaint was that the article is presenting this not as an interesting scientific discovery, but as some kind of energy production breakthrough that’s poised to solve climate change. What we need to be doing is massively expanding our nuclear power generation as well as continuing to expand our solar, wind, and hydro power generation while decommissioning coal and gas plants.
I agree with you, the author of this article sucks, and I agree with your plan to expand cleaner energy production, including nuclear. But I would add that energy transmission is itself an infrastructure liability, and creating hydrogen distribution pathways will contribute to the progress.
Yes, the centralized nature of our energy grids are a problem. It’s both a blessing and a curse. It’s far easier to manage and makes investing in very expensive but very scalable energy generation systems feasible, but comes with the considerable downside that long distance power transmission includes all kinds of headaches and doesn’t respond well to large shifts in demand. A very distributed system, say with some sort of neighborhood level power distribution/sharing system and per-house solar or wind power and storage would remove the need for long distance power transmission, but would be massively more complicated to manage, and still wouldn’t solve all issues around large swings in demand, while introducing expensive ongoing maintenance (mostly in power storage). Ideally some kind of hybrid system where most power needs are met at the local level, with a few large systems to handle excess demand would probably be ideal, although then you’re double paying for maintenance as you have to maintain both the local system and the large centralized one, but in theory the load on both would be more manageable. Unfortunately the current system is very much NOT setup to allow for local power generation and distribution and overhauling it to support something like that would be non-trivial.
The size of the recoverable deposit is also not that well known at this point.
This really gives off oil company clean coal vibes.
Why’s that? Is it just a feeling or do you think this article is lying about something specific?
“largest known deposit”
Because they’re taking a limited deposit of stuff out of the ground. Again. And when it starts to run out we’ll have to dig deeper and pollute more. Again.
This is the easy way. We should have learned by now that’s a bad idea.
But burning hydrogen only creates water. Burning it doesn’t pollute.
Extraction pollutes. They’re talking about extraction of a natural resource.
An article containing “scientists say”, “could”, AND “save the world” in the title?!? There’s NO WAY this is overhyped! Just tell me who to write the check to, and how many zeros it should have!
I’d there something specifically wrong with the article?
I’m just laughing at the title they gave it. It seems overly optimistic and clickbaity. Besides, there’s always a big difference between what’s possible under controlled laboratory conditions and what’s practical and available in the real world.
I think we should only use organic free range hydrogen .
I knew there was a new Color coding hydrogen article because I’ve seen lots of comments in the last day of people talking about it like its been their career for the last 30 year’s
My favorite hydrogen is dark fuchsia. That’s when you capture your flatulences in a pink balloon.
A hundred years ago the East Coast US village my grandmother grew up in had municipal hydrogen gas supply.
Hydrogen lights, cooking etc.
Crazy huh?
deleted by creator
Since burning hydrogen just creates water, no, not really.
deleted by creator
Are you suggesting we’re going to flood the world if we use hydrogen fuel?
deleted by creator
It wouldn’t affect it any more than what we currently do to get natural gas. It can also be produced cleanly through eletrolyzing water or from biomass like peat. In the future, we could even extract it directly from stars.
But burning coal just creates CO2, which every animal breathes out anyway?
Not quite. There is a CO2 cycle similar to the water cycle. Basically plants/algea absorb CO2 from the atmosphere then animals eat those, burn it and release it back in a somewhat balanced way.
Burning coal and other fossile fuel is adding large quantities of CO2 to the air that were previously stored. And it doesn’t take a lot of CO2 to mess things up (we only messure it in parts per million). So just burning the stored coal almost doubled the CO2 in our atmosphere, which is a big deal.
On the other hand, adding a few lake superiors to the ocean is literally a drop in the bucket.
… I mean it wouldn’t imbalance C02 but you would be adding water. At scale that could be just as bad.
Carbon neutral, yes, but water positive.
How would it be just as bad? Water doesn’t cause climate change.
If we converted all of the CO2 humans have ever released into water, you’d get around 2.5 times lake superior. I don’t see how that would cause much issues.
Water vapor is a greenhouse gas.
Yes, but the amount of it in the air globally is not increased by burning hydrogen. The processes that remove extra water vapor from the atmosphere operate on a much faster time scale than the ones that remove CO2.
It wouldn’t be on it’s own though.
Without other greenhouse gases kickstarting the warming process, just adding water vapor to the atmosphere just saturates it faster, slowing natural evaporation of the water cycle, which would eventually just move all the additional water to the ocean.
deleted by creator
The amount of water we’re talking about is insignificant given the already large reservar of water we have on earth. Also in the absence of other greenhouse gases, the water cycle is self regulating, it doesn’t act as a greenhouse gas in the absence of another sauce of warming (which then increases the moisture carrying capacity of the air, starting a feedback loop).
CO2 is much more rare so adding that same amount in CO2 is very significant.
It’s a bit like making a sauce. Adding a bit more of your main ingredient (for example cream in a cream based sauce) won’t make much difference to how it tastes. But add the same amount of a potent spice and your sauce is ruined.
“at scale” it could be just as bad. C02 isn’t poisonous the big problem we’re dealing with is we’re putting C02 from the ground in oil and coal and putting it into the air. We’ve been adding C02 that was NOT in the environment into the environment.
Yeah some water isn’t a bad thing, but if all of a sudden we’re adding from sources outside of the water cycle a LOT more water into the atmosphere you’ve got increased clouds, increased weather patterns, All of a sudden the inland portions of continents can start dumping as much water into the air as a warm ocean, that can DEFINITELY be a problem.
Yeah, but we’re really talking a LOT more water here. Like Noah’s ark numbers.
I was talking about an amount equal to what we so far added in CO2, which is would be an insignifcant amount when turned into water.
Burning Hydrogen produces pure, fresh water, a very scarce resource relatively speaking.
Also, even at scale it’s not even a drop in a bucket compared to the oceans.
Water is good for you
We don’t have enough fresh water so that is of limited concern.
The big problem with hydrogen is leaks, which we can’t measure well enough yet. But 5% leakage cancels out all the benefits from replacing fossil fuels. And I’d guess hydrogen leaks from natural sources would be even harder to control.
Massive potential from hydrogen but lots of problems to solve.
Well fuck… it doesn’t seem to matter much what we do, we have simply overshot the carrying capacity of the earth, by a lot, and no matter what tech we try to use to solve the problem, the carrying capacity is the one thing we can’t solve for, or at least, we can’t seem to.
We have more than enough resources to go around, they’re just badly distributed. And mostly in the hands of people who have a lot of money tied up in Big Carbon.
We can easily produce enough renewable electricity to replace all fossil fuels. Hydrogen has a role in storing renewables, along with batteries and hydro. We just need to get strict about leaks. And improve transport and housing so that we need less fuel to start with.