I’m not American, but I’ve lived a few years in the US. I find it very interesting that the US invented the electric infrastructure that we use today, but they really screwed up a few things. Firstly, the connectors are far too unsafe. They are flimsy and have no protection from electrocution. Secondly, by using 120V as the main voltage, you need more current to do the same amount of work as a 240V system. Thay means thicker wires, more stress on the plugs, and greater fire hazards.
It’s not surprising. If you’re first to adopt something by the time you realize how it could be improved you’re locked into what you did. It happens with all kinds of early adoption. I noticed it a lot in Japan which picks up tech really quickly but as a result has been left with a bunch of crufty old systems. Like they were way ahead on contactless payment, but now they have a bunch of complex and confusion payment systems and lots of them don’t support credit cards while the rest of the world just has contactless credit cards.
It would be from a financial standpoint. Changing a standard this widely implemented is very costly.
Why change it if they’re compatible anyways? Most devices in the eu are designed to accomodate both, its just a question of the earth pin being different.
I’ve travelled all across europe, coming from a country with the french style outlets. I never had any problems connecting anything except for Switzerland and Italy, because they stuck to their own (inferior) standard thats not compatible with anything else.
And the standard includes a plus or minus that I don’t remember: it’s unreasonable to expect an exact voltage and everything is built with that in mind
Many people from other countries fret about the unsafe plugs in the US. They of course do not have the same level of safety, but it also doesn’t appear to matter. I have never been shocked inserting or removing a US plug. I don’t know and haven’t heard of anyone who has. People do get shocked, but for other reasons.
I have, but I was a child and very much not plugging it in the right way. It was in a very cramped space I couldn’t see, and dumbass me thought holding the metal would give me better control. It did, I made it into the plug.
As a kid I used a metal tool to cut a live wire 220v-240v wire and besides getting scared by the jolt I was fine. Probably because the protection circuits kicked in
As an idiot, I’ve gotten shocked by 120v multiple times and 240v once. That hurt a lot more. Hopefully I have survived long enough so far to be less of an idiot
The one time I’ve had an issue with our plugs (that would have been solved by something like the British plug design) was when I wasn’t paying attention to a remote antenna resting on top of a loose plug. Accidentally caused a short that melted that little bit of wire but nothing else happened. Just had a black spot on that outlet from then onward.
I have shocked myself on one once but just like with the other person replying that was as a child and felt more like a learning experience to not mess with outlets.
This is exactly why I like having “upside down” US plugs where the ground pin is on top. If there’s a ground pin in the plug, it prevents pennies and paperclips from falling onto the hot and neutral pins. Unfortunately, this isn’t as common because 1. Some contractors beleive it’s illegal, 2. Many wall wart adapters and lay flat plugs assume the receptacle goes ground pin down, and 3. It doesn’t look like a shocked face.
I think the distinction is we don’t use general purpose 240v receptacles. We only use them as dedicated circuits for built in major appliances. Historically that was sufficient.
We also don’t really use 20a outlets. I don’t know why, especially now that we require 20a circuits in a few places, but you rarely see 20a outlets or appliances with 20a plugs, even though a lot of small appliances could benefit from a little extra power
So is there really a need? Electric kettles are a perfect scenario but what else? Most other use cases for 240v are “built in” appliances not likely to move (welder, air conditioner, laundry, range, etc). Space heaters and hot plates are already dangerous enough that allowing double the current seems like a hazard
Space heaters and hot plates are already dangerous enough that allowing double the current seems like a hazard
You’d require half the current for the same wattage at 240v. At most, it’s the same 15a max, with double the voltage.
Tbh I think I’d rather achieve the same heat output by running them at 240v using less current instead of 110v and pulling as much current as possible/permitted (15a).
Insulation is cheaper than actual conductors too. Higher voltage and lower current means thinner conductors with more insulation to protect them. You’d also remove complexity and thus cost by only needing one voltage. No need for a split phase supply.
u fool if the plugs functioned consistently and were made intelligently that might cost extra money and would DEMOLISH the rich peoples pockets we cant have that. who’s gonna profit off my taxes?
On your first point, the plugs have improved quite a lot in the last 10 or so years. Still not enough compared to most other Western standards, and it’s taken to long. But they have improved.
…Just in time for USB plugs and sockets to start taking off. Though I’m not sure how big a deal those are when it comes to safety.
I’m not American, but I’ve lived a few years in the US. I find it very interesting that the US invented the electric infrastructure that we use today, but they really screwed up a few things. Firstly, the connectors are far too unsafe. They are flimsy and have no protection from electrocution. Secondly, by using 120V as the main voltage, you need more current to do the same amount of work as a 240V system. Thay means thicker wires, more stress on the plugs, and greater fire hazards.
Shuko plugs FTW
It’s not surprising. If you’re first to adopt something by the time you realize how it could be improved you’re locked into what you did. It happens with all kinds of early adoption. I noticed it a lot in Japan which picks up tech really quickly but as a result has been left with a bunch of crufty old systems. Like they were way ahead on contactless payment, but now they have a bunch of complex and confusion payment systems and lots of them don’t support credit cards while the rest of the world just has contactless credit cards.
yeah but it looks like a funny face!
I didn’t know that schuko plugs are the norm for most Europe countries, I thought it was a German thing
https://en.wikipedia.org/wiki/Schuko
Also the french system is compatible with Schuko, so that makes it even more universal.
Yeah I don’t know why we don’t make the switch in France as it wouldn’t be that much of a change
It would be from a financial standpoint. Changing a standard this widely implemented is very costly.
Why change it if they’re compatible anyways? Most devices in the eu are designed to accomodate both, its just a question of the earth pin being different.
I’ve travelled all across europe, coming from a country with the french style outlets. I never had any problems connecting anything except for Switzerland and Italy, because they stuck to their own (inferior) standard thats not compatible with anything else.
The smaller devices like chargers and small lamps have a euro plug that can plug in schucko, danish, italian, swiss, french (but not british)
You’re right, I forgot about that. But good luck plugging your laptop or hair dryer in without some janky adapter.
A laptop you can plug in all of Europe. But a hairdryer you cant because (at least mine) uses a schucko plug (but without ground so wtf)
I feel like the US has a very strong resistance to change regarding standards.
The 110v for example used to be the norme in France, but they changed it to 220v in the 50’ and then 230v in the 90’.
Same thing for the plugs, the paper size, the measurement system …
While the US system gets called 110/220, my house actually puts out ~242v. Right now I have a smart plug saying 121.5v.
And since you mentioned the word “plugs”, here are our 220 15a and 20a outlets.
120/240 is the nominal voltage in North America. 110/220 is archaic/colloquial/wrong.
And the standard includes a plus or minus that I don’t remember: it’s unreasonable to expect an exact voltage and everything is built with that in mind
Many people from other countries fret about the unsafe plugs in the US. They of course do not have the same level of safety, but it also doesn’t appear to matter. I have never been shocked inserting or removing a US plug. I don’t know and haven’t heard of anyone who has. People do get shocked, but for other reasons.
I have, but I was a child and very much not plugging it in the right way. It was in a very cramped space I couldn’t see, and dumbass me thought holding the metal would give me better control. It did, I made it into the plug.
Ok, so there are people out there doing it.
Did you die? I wonder about the truth behind the idea that getting shocked with 120v is less likely/hazardous than double that
I did, in fact die. God is real, but it’s complicated. Eat your vegetables. Your mom was always proud.
As a kid I used a metal tool to cut a live wire 220v-240v wire and besides getting scared by the jolt I was fine. Probably because the protection circuits kicked in
As an idiot, I’ve gotten shocked by 120v multiple times and 240v once. That hurt a lot more. Hopefully I have survived long enough so far to be less of an idiot
The one time I’ve had an issue with our plugs (that would have been solved by something like the British plug design) was when I wasn’t paying attention to a remote antenna resting on top of a loose plug. Accidentally caused a short that melted that little bit of wire but nothing else happened. Just had a black spot on that outlet from then onward.
I have shocked myself on one once but just like with the other person replying that was as a child and felt more like a learning experience to not mess with outlets.
This is exactly why I like having “upside down” US plugs where the ground pin is on top. If there’s a ground pin in the plug, it prevents pennies and paperclips from falling onto the hot and neutral pins. Unfortunately, this isn’t as common because 1. Some contractors beleive it’s illegal, 2. Many wall wart adapters and lay flat plugs assume the receptacle goes ground pin down, and 3. It doesn’t look like a shocked face.
I think the distinction is we don’t use general purpose 240v receptacles. We only use them as dedicated circuits for built in major appliances. Historically that was sufficient.
We also don’t really use 20a outlets. I don’t know why, especially now that we require 20a circuits in a few places, but you rarely see 20a outlets or appliances with 20a plugs, even though a lot of small appliances could benefit from a little extra power
So is there really a need? Electric kettles are a perfect scenario but what else? Most other use cases for 240v are “built in” appliances not likely to move (welder, air conditioner, laundry, range, etc). Space heaters and hot plates are already dangerous enough that allowing double the current seems like a hazard
You’d require half the current for the same wattage at 240v. At most, it’s the same 15a max, with double the voltage.
Tbh I think I’d rather achieve the same heat output by running them at 240v using less current instead of 110v and pulling as much current as possible/permitted (15a).
Insulation is cheaper than actual conductors too. Higher voltage and lower current means thinner conductors with more insulation to protect them. You’d also remove complexity and thus cost by only needing one voltage. No need for a split phase supply.
I think 240v would be a better option. 🇨🇦
u fool if the plugs functioned consistently and were made intelligently that might cost extra money and would DEMOLISH the rich peoples pockets we cant have that. who’s gonna profit off my taxes?
On your first point, the plugs have improved quite a lot in the last 10 or so years. Still not enough compared to most other Western standards, and it’s taken to long. But they have improved.
…Just in time for USB plugs and sockets to start taking off. Though I’m not sure how big a deal those are when it comes to safety.