Depending on where we look, the universe is expanding at different rates. Now, scientists using the James Webb and Hubble space telescopes have confirmed that the observation is not down to a measurement error.
So it works fine on human scales, but for most of the universe it is inadequate. That means it’s wrong. Quantum physics and relativity are also wrong since he are unable to reconcile the two, despite them both being the best models we have for their respective scales. We have known for the past century that we have only just begun to understand the universe, and that all our models are irreconcilable with each other, meaning that they are ultimately wrong.
Just because a model is useful doesn’t mean it is right.
Agreed, but it leads to people who are less knowledgeable to draw the wrong conclusions.
Basically for just about anything you want to do on Earth Newton works perfectly fine. You can send people to the moon using nothing but Newton. Two big things you need Einstein for is the orbit of Mercury and GPS satellites. So from a pure science point of view Newton is wrong or maybe incomplete. From a regular Joe point of view Newton is dead on.
By proclaiming Newton is wrong, it leads to people concluding that all science is wrong, because there is always someone working on the next iteration. So people think vaccines are dangerous, wearing masks is dumb, herbs and spices cure cancer, global warming is fake and homeopathic shit does anything except remove money from their wallets. Because what do scientists know, they’ve been wrong all the time in the past.
Newton is not wrong, it’s just incomplete for some very niche things. And Einstein fixed all of that so we’re all good.
In reality it’s good to always be looking to disprove something and create new and better knowledge. But only if that’s your job and only for very niche things. We’ve got the basics down for most things on Earth and there is no reason any regular person should doubt that.
You see this thinking in science too. Dark matter has always struck me as an awful solution to a model breaking down. It’s basically “the numbers don’t add up so let’s add a fudge factor to make it say what we want”. But you’re generally considered a kook for questioning it now. People will spout a bunch of big words and hope you shut up if you do.
Be careful saying homeopathy only removes money from wallets. Yes it does that but it can be worse. Most of the vials are just water but any with a 1x or 1c designation actually do have some of the herbal element remaining and can cause problems.
By proclaiming Newton is wrong, it leads to people concluding that all science is wrong, because there is always someone working on the next iteration
I’ve never had sympathy for this line of thinking. Is the average person truly too ignorant to understand that science is a constantly developing process of better understanding our universe, not some set of unimpeachable rules carved into stone tablets once and forever? The fact that science can be updated, changed, revolutionized, is what makes it powerful.
If people need to be ‘protected’ from that fact, there is something fundamentally wrong with the way science is taught in schools. I can’t accept that the average person can’t comprehend such a simple idea that would take less than an hour to convincingly communicate.
I think you have too much faith in the knowledge and scientific curiosity of the average person.
I sat through years of hard science classes with biology majors who mosty graduated with honors, most who went on to complete graduate or medical schools, and almost all of them still don’t believe that evolution is valid beyond “microevolution.” It’s the overarching and underpinning theory for all of biology and its subdomains, it’s the only theory available that successfully predicts all of the experimental results in the life sciences, and all it took to convince them evolution is completely wrong is a couple paragraphs about Lamarck and giraffes and Haeckel and embryos.
I would say those people all have an above average understanding of science, but still don’t understand the scientific method and how science constantly improves on itself.
I’ve never had sympathy for this line of thinking. Is the average person truly too ignorant to understand that science is a constantly developing process of better understanding our universe, not some set of unimpeachable rules carved into stone tablets once and forever?
YES because often times the opposing model is the Bible, which is updated very irregularly and people will form sects over a single differing interpretation of a single passage.
Changing your mind / learning new information can be construed as the super-hated “flip-flop”.
Unfortunately, the illogical are immune to logic. No amount of it will be effective.
It’s less that Newton is wrong and more like it’s an approximation. Things always get more complicated because we are learning more about everything all the time, but for simple day to day things Newton is fine to be used and even taught.
You could also say it’s important from a historical perspective, learning how we got from Newton to bigger and better things is important too.
Yes, the average person is ignorant of stuff that need to be updated once in a while. There is something wrong with the current form of education. And you need to accept that understanding doesn’t come easy.
If you can’t do that last part, well, there you go. Same thing for the average person.
It’s inaccurate, not wrong. Framing things in right and wrong misrepresents scientific progress in a way that leads to ridiculous conclusions like some post-modernist post-truth philosophers came up with.
I agree with the essence of your point but personally I’d never use the word “wrong”, only incomplete. Seems weird to call Newton’s laws “wrong” when the only reason that we are willing to accept GR is that it reduces to Newton.
It’s not so much that it reduces to Newtonian predictions but that at human scale and energy levels the difference between Newtonian and general relatively is so small it’s almost impossible to tell the difference.
What you’re describing is literally what it means for general relativity to reduce to Newtonian mechanics. You can literally derive Newton’s equations by applying calculus to general relativity. In fact, if you ever get a physics degree, you’ll have to learn how to do it.
Isaac Newton made some incorrect assumptions. In most situations on earth the error is small enough to ignore (you don’t need to worry about time dialation to calculate the projectile path of a thrown rock), but there’s depreciencies in the cosmos (like mercury’s weird precession). So in a sense, elementary mechanics never was correct, but it was the best humanity had for awhile until Einstein’s relativity and it’s still useful in many not-extreme contexts.
Really, until we actually find dark matter, we can’t say for sure that relativity is correct either, but that’s just science.
We noticy it’s effects on baryonic matter, but have no known way of detecting dark matter itself. It’s a bit like how a fisherman can know that there is a large fish in the pond by the giant splashes and ripples in the water, but he can’t catch it because it has zero interest in any lures or bait he uses.
No, Newtonian physics works just fine. Unless things are too big, too small, too fast, or too slow.
At least that’s what a meme I once saw said.
So it works fine on human scales, but for most of the universe it is inadequate. That means it’s wrong. Quantum physics and relativity are also wrong since he are unable to reconcile the two, despite them both being the best models we have for their respective scales. We have known for the past century that we have only just begun to understand the universe, and that all our models are irreconcilable with each other, meaning that they are ultimately wrong.
Just because a model is useful doesn’t mean it is right.
Agreed, but it leads to people who are less knowledgeable to draw the wrong conclusions.
Basically for just about anything you want to do on Earth Newton works perfectly fine. You can send people to the moon using nothing but Newton. Two big things you need Einstein for is the orbit of Mercury and GPS satellites. So from a pure science point of view Newton is wrong or maybe incomplete. From a regular Joe point of view Newton is dead on. By proclaiming Newton is wrong, it leads to people concluding that all science is wrong, because there is always someone working on the next iteration. So people think vaccines are dangerous, wearing masks is dumb, herbs and spices cure cancer, global warming is fake and homeopathic shit does anything except remove money from their wallets. Because what do scientists know, they’ve been wrong all the time in the past.
Newton is not wrong, it’s just incomplete for some very niche things. And Einstein fixed all of that so we’re all good.
In reality it’s good to always be looking to disprove something and create new and better knowledge. But only if that’s your job and only for very niche things. We’ve got the basics down for most things on Earth and there is no reason any regular person should doubt that.
You see this thinking in science too. Dark matter has always struck me as an awful solution to a model breaking down. It’s basically “the numbers don’t add up so let’s add a fudge factor to make it say what we want”. But you’re generally considered a kook for questioning it now. People will spout a bunch of big words and hope you shut up if you do.
Be careful saying homeopathy only removes money from wallets. Yes it does that but it can be worse. Most of the vials are just water but any with a 1x or 1c designation actually do have some of the herbal element remaining and can cause problems.
I’ve never had sympathy for this line of thinking. Is the average person truly too ignorant to understand that science is a constantly developing process of better understanding our universe, not some set of unimpeachable rules carved into stone tablets once and forever? The fact that science can be updated, changed, revolutionized, is what makes it powerful.
If people need to be ‘protected’ from that fact, there is something fundamentally wrong with the way science is taught in schools. I can’t accept that the average person can’t comprehend such a simple idea that would take less than an hour to convincingly communicate.
I think you have too much faith in the knowledge and scientific curiosity of the average person.
I sat through years of hard science classes with biology majors who mosty graduated with honors, most who went on to complete graduate or medical schools, and almost all of them still don’t believe that evolution is valid beyond “microevolution.” It’s the overarching and underpinning theory for all of biology and its subdomains, it’s the only theory available that successfully predicts all of the experimental results in the life sciences, and all it took to convince them evolution is completely wrong is a couple paragraphs about Lamarck and giraffes and Haeckel and embryos.
I would say those people all have an above average understanding of science, but still don’t understand the scientific method and how science constantly improves on itself.
That’s incredibly shocking and concerning.
YES because often times the opposing model is the Bible, which is updated very irregularly and people will form sects over a single differing interpretation of a single passage.
Changing your mind / learning new information can be construed as the super-hated “flip-flop”.
Unfortunately, the illogical are immune to logic. No amount of it will be effective.
It’s less that Newton is wrong and more like it’s an approximation. Things always get more complicated because we are learning more about everything all the time, but for simple day to day things Newton is fine to be used and even taught.
You could also say it’s important from a historical perspective, learning how we got from Newton to bigger and better things is important too.
Yes, the average person is ignorant of stuff that need to be updated once in a while. There is something wrong with the current form of education. And you need to accept that understanding doesn’t come easy.
If you can’t do that last part, well, there you go. Same thing for the average person.
I think you communicated it well in two paragraphs.
It’s inaccurate, not wrong. Framing things in right and wrong misrepresents scientific progress in a way that leads to ridiculous conclusions like some post-modernist post-truth philosophers came up with.
Conversely, just because a model is wrong doesn’t mean it’s not useful.
Some relevant reading: The Relativity of Wrong, by Isaac Asimov.
I agree with the essence of your point but personally I’d never use the word “wrong”, only incomplete. Seems weird to call Newton’s laws “wrong” when the only reason that we are willing to accept GR is that it reduces to Newton.
I prefer mine:
Why use many words when few will do?
It’s not so much that it reduces to Newtonian predictions but that at human scale and energy levels the difference between Newtonian and general relatively is so small it’s almost impossible to tell the difference.
What you’re describing is literally what it means for general relativity to reduce to Newtonian mechanics. You can literally derive Newton’s equations by applying calculus to general relativity. In fact, if you ever get a physics degree, you’ll have to learn how to do it.
In fact, Lord Rutherford said that “ALL models are wrong, but some are useful” 🙂
While we’re talking about scientific nobility…
“In science there is only physics; all the rest is stamp collecting.”
– Lord Kelvin
Isaac Newton made some incorrect assumptions. In most situations on earth the error is small enough to ignore (you don’t need to worry about time dialation to calculate the projectile path of a thrown rock), but there’s depreciencies in the cosmos (like mercury’s weird precession). So in a sense, elementary mechanics never was correct, but it was the best humanity had for awhile until Einstein’s relativity and it’s still useful in many not-extreme contexts.
Really, until we actually find dark matter, we can’t say for sure that relativity is correct either, but that’s just science.
I thought we may have found dark matter already, but we lack the ability to measure it and confirm?
We noticy it’s effects on baryonic matter, but have no known way of detecting dark matter itself. It’s a bit like how a fisherman can know that there is a large fish in the pond by the giant splashes and ripples in the water, but he can’t catch it because it has zero interest in any lures or bait he uses.
Now that there is an understandable analogy.